frequency; U_S, U_Z, components of the displacement vector in the direction and normally to the middle surface, respectively; ε_{s} , ε_{θ} , ε_{z} , relative deformations of the piezoceramic material; v, Poisson ratio; $E_{z}^{(\circ)}$, electric field intensity; d₃₁, piezomodule; s_{11}^{E} , elastic pliability of the piezoceramic material; C_{e1} , capacitance, v, volume of the transducer; E, Young's modulus; e_{31}^{*} , e_{33}^{*} , imaginary parts of the complex piezoelectric constants; fAR, relative error of measuring the thermistor resistance; $f_{tan \alpha}$, error of measuring the tangent of the angle of slope of the tangent to the calibration curve; α_t , heat-transfer coefficient; F, area of heat exchange; q_n , uniformly distributed mechanical load normal to the surface of the shell.

LITERATURE CITED

- 1. G. A. Grinberg, M. I. Kontorovich, and N. N. Lebedev, "The course of thermal breakdown in time," Zh. Tekh. Fiz., <u>10</u>, No. 3, 199-216 (1940).
- D. Berlincore, D. Kerran, and G. Jaffe, "Piezoelectric and piezomagnetic materials and their application to transducers," in: Physical Acoustics (edited by W. Mason), Part 1A (1966), pp. 204-326.
- 3. R. Holland and E. Eer Nisse, Design of Resonant Piezoelectric Devices, MJT Press, Cambridge, Massachusetts (1968).
- 4. V. G. Karnaukhov, Connected Problems of Thermoviscoelasticity [in Russian], Naukova Dumka, Kiev (1982).
- 5. A. E. Love, Treatise on the Mathematical Theory of Elasticity, Dover (1927).
- V. A. Boriseiko, V. T. Grinchenko, and L. F. Ulitko, "Electroelastic relationships for piezoceramic shells of revolution," Prikl. Mekh., <u>12</u>, No. 2, 26-33 (1976).
- 7. V. V. Moskvitin, Cyclic Loading of Structural Elements [in Russian], Nauka, Moscow (1981).
- Z. Gabryszewski and W. Srodka, "Zastowanie temperatury sprzeznej zodksztalceniami do oceny dyssypacii energii i wyznszania granic plastycznosci," Mekh. Teor. Stosowana, 19, No. 1, 11-25 (1981).

SPECIFIC HEAT IN THE NH4NO3-HNO3-H2O SYSTEM

UDC 536.63:541.427.6

V. I. Gladushko, G. A. Bochenko,G. N. Prokof'eva, V. P. Privalko,and J. Vinarčik

The specific heat has been measured in this ternary system. A theoretical study has been made of the effects of temperature and of the electrolyte concentrations $(NH_4NO_3 \text{ and } HNO_3)$ on the specific heat.

One needs data on the specific heat in the NH_4NO_3 - HNO_3 - H_2O system for technological calculations on the production of water-filled explosives and ammonium nitrate [1].

The specific heat in a ternary electrolyte system $(C_{p_3}, kJ \cdot kg^{-1} \cdot K^{-1})$ can be calculated theoretically from an equation derived by Zdanovskii from additivity:

 $C_{p_3} = C_{p_1} \frac{C_1}{X_1} + C_{p_2} \frac{C_2}{X_2} . \tag{1}$

To calculate the specific heat of the ternary system containing C_1 and C_2 of each electrolyte component, it is necessary to know the specific heats C_p and C_{p_2} for the binary isopiestic solutions. The electrolyte concentrations in the binary isopiestic solutions X_1 and X_2 may be determined graphically from the activities of the water in them. However, the literature carries no data on the water activities in the NH₄NO₃-H₂O and HNO₃-H₂O binary systems at temperatures above 25°C. It was therefore necessary to measure the specific heats for aqueous solutions of NH₄NO₃ and the ternary system NH₄NO₃-H₂O containing up to 80 mass % NH₄NO₃ and up to 30 mass % HNO₃ at temperatures between 20 and 80°C.

Kiev Polytechnical Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 1, pp. 90-91, January, 1985. Original article submitted July 21, 1983.

TABLE 1. Specific Heat C_{p_3} (kJ·kg⁻¹·K⁻¹) of the Binary NH₄NO₃-H₂O System and the Ternary NH₄NO₃-HNO₃-H₂O One

Temp.,	Mass , %	NH4NO3 concn., mass %							
'C		10	20	30	40	50	60	70	80
				Bi	narv svste	m			
20	0 1	3.812	3,5201	3.268	3.035	2.805	2,633	· ·	
30	0	3,821	3,526	3,273	3,039	2,812	2,643	2,427	
40	0	3,837	3,533	3,283	3,047	2,818	2,647	2,431	
50	0	3,844	3,539	3,295	3,050	2,823	2,652	2,435	
60	0	3,854	3,551	3,306	3,055	2,825	2,655	2,439	2,310
. 20		3,805	3,505	3,320	3,062	2,829	2,657	2,443	2,314
00	υ.	3,010	3,573	3,331	3,070	2,034	2,009	2,440	2,321
				Т	ernary syst	em			
20	1 10	3.446	3.2051	2.986	2.865	2,708		(I
30	10	3.446	3.220	3,000	2,876	2,718			
40	10	3,489	3,242	3,013	2,887	2,728		`	
50	10	3,502	3,266	3,030	2,895	2,739	2,510		
60	10	3,522	3,285	3,050	2,910	2,751	2,519	2,440	
70	10	3,548	3,305	3,067	2,921	2,764	2,530	2,448	
80	10	3,568	3,326	3,082	2,934	2,777	2,540	2,457	
20	20	3,143	2,990	2,792	2,618	2,464	2,397		
40	20	3 100	3 036	2,010	2,044	2,470	2,413		
50	20	3,220	3 062	2,853	2,684	2,450 2,523	2,420 2,434		
60	20	3.253	3,080	2,870	2,700	2,537	2,445	·	_
70	20	3,281	3,105	2,892	2,729	2,562	2,452		
80	20	5,310	3,124	2,904	2,758	2,578	2,465		
20	30	3,022	2,793	2,638	2,492			<u> </u>	
30	30	3,056	2,813	2,659	2,505				
40 50	30	3,080	2,830	2,674	2,524				ļ
00 60	20	3,108	2,852	2,089	2,544	—			
70	30	3 160	2,011	2,099 9,719	2,000 2575	— <u> </u>			
80	30	3,180	2.915	2,710 2,735	2,588	-			

The measurements were made by scanning calorimetry with an apparatus developed at the Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR [2].

The experimental data (Table 1) were fitted to a polynomial of second degree that incorporated the effects of temperature and the concentrations of both electrolytes on the specific heat in the NH_4NO_3 - HNO_3 - H_2O system. A Mir-2 computer was used to perform the fitting on 209 experimental points.*

The equation takes the form

$$C_{p_{2}} = 4.073 + 1.037 \cdot 10^{-2}t - 3.136 \cdot 10^{-2}C_{1} - 3.641 \cdot 10^{-2}C_{2} + 3.660 \cdot 10^{-6}t^{2} + 1.326 \cdot 10^{-4}C_{1}^{2} + 1.749 \cdot 10^{-4}C_{2}^{2} - 2.271 \cdot 10^{-5}C_{1}t + 4.506 \cdot 10^{-5}C_{2}t + 2.973 \cdot 10^{-4}C_{1} \cdot C_{2},$$
(2)

where C_{p_3} is the specific heat in the ternary system in kJ/kg⁻¹·K⁻¹, while C_1 and C_2 are the concentrations in mass % of the NH₄NO₃ and HNO₃ in the ternary system, and t is temperature in °C.

The relative standard deviation of the specific heats calculated from (2) from the experimental values was not more than 1.83%. The maximum relative error was 6.82%.

One can compare the measured C_{p_3} (Table 1) with those calculated from additivity via (1), which shows that the deviations are not more than 2% relative below 55°C. The deviations increase at higher temperatures, which is due to the determination of X_1 and X_2 from the activity coefficients for water in binary solutions at 25°C.

Equation (2) can also be used to determine the specific heats of aqueous NH_4NO_3 solutions not containing HNO_3 in the region up to 80 °C for NH_4NO_3 concentrations up to 80 mass %.

By using (2), one can avoid cumbersome graphical constructions in determining X_1 and X_2 as required in calculating C_{p_3} from (1). Equation (2) also enables one to employ a computer in technological calculations.

*Program written by O. T. Popovich and G. A. Bochenko.

LITERATURE CITED

- V. M. Olevskii (ed.), The Technology of Ammonium Nitrate [in Russian], Khimiya, Moscow (1978).
- Yu. K. Godovskii, Thermophysical Methods of Examining Polymers [in Russian], Khimiya, Moscow (1976).

SEPARATION OF A BINARY MIXTURE IN A THERMODIFFUSION COLUMN

WITH A SPIRAL WINDING

G. D. Rabinovich

UDC 621.039.3:533.735

The solution of the transfer equation in a thermodiffusion column with spiral winding in sampling conditions is given for the case $c(1 - c) \approx const$.

In [1], the transfer equation for a cylindrical column with a spiral winding (Fig. 1) was obtained *

$$\frac{\partial c}{\partial \theta} = (\cos^2 \varphi + k) \frac{\partial^2 c}{\partial u^2} + 2\sin \varphi \cos \varphi \frac{\partial^2 c}{\partial u \partial v} + (\sin^2 \varphi + k) \frac{\partial^2 c}{\partial v^2} - \\ -\cos \varphi \frac{\partial}{\partial u} [c(1-c)] - \sin \varphi \frac{\partial}{\partial v} [c(1-c)] - \varkappa \frac{\partial c}{\partial u}, \qquad (1)$$

where

$$u = \frac{H^{(0)}z}{K_c^{(0)}}, \ v = \frac{H^{(0)}y}{K_c^{(0)}}, \ \theta = \frac{H^{(0)2}t}{\rho\delta K_c^{(0)}}, \ k = \frac{K_d^{(0)}}{K_c^{(0)}}, \ \varkappa = \frac{\sigma}{BH^{(0)}}.$$
(2)

In the present work, a solution is given to the problem of separating a binary liquid mixture for which the condition $c(1 - c) \approx const = a$ is observed throughout the whole process, and the coefficient k satisfies the inequalities

$$k \ll \cos^2 \varphi; \ k \ll \sin^2 \varphi. \tag{3}$$

Since in the separation of liquid mixtures k is of the order of $5 \cdot 10^{-3}$, it follows from Eq. (3) that

$$15^{\circ} \leqslant \varphi \leqslant 75^{\circ}. \tag{4}$$

Then in the steady state Eq. (1) is replaced by

$$\cos^2\varphi \frac{\partial^2 c}{\partial u^2} + 2\sin\varphi \cos\varphi \frac{\partial^2 c}{\partial u \partial v} + \sin^2\varphi \frac{\partial^2 c}{\partial v^2} - \varkappa \frac{\partial c}{\partial u} = 0.$$
(5)

The solution of Eq. (5) must satisfy the following conditions.

1. The flux along the z axis — see Eqs. (2.7) and (2.9) of [1] — is determined by the expression

$$j_{z}^{*} = \frac{H^{(0)}}{\delta} c (1-c) \cos \varphi - \frac{K_{c}^{(0)}}{\delta} \cos^{2} \varphi \frac{\partial c}{\partial z} - \frac{K_{c}^{(0)}}{\delta} \sin \varphi \cos \varphi \frac{\partial c}{\partial y} + \frac{\sigma}{B\delta} c$$

This flux at the outlet from the apparatus (when z = L) should be equal to $\sigma c_e/B\delta$, which, taking account of the first two expressions in Eq. (2), leads to the result

$$\left(a - \cos\varphi \frac{\partial c}{\partial u} - \sin\varphi \frac{\partial c}{\partial v}\right)_{u = u_{\rho}} = 0$$

*In [1], the errors corrected in [2, 3] were still present in Eq. (32).

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 1, pp. 92-95, January, 1985. Original article submitted November 23, 1983.